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ABSTRACT
Mapping quantitative trait loci in plants is usually conducted using a population derived from a cross

between two inbred lines. The power of such QTL detection and the parameter estimates depend largely
on the choice of the two parental lines. Thus, the QTL detected in such populations represent only a
small part of the genetic architecture of the trait. In addition, the effects of only two alleles are characterized,
which is of limited interest to the breeder, while common pedigree breeding material remains unexploited
for QTL mapping. In this study, we extend QTL mapping methodology to a generalized framework, based
on a two-step IBD variance component approach, applicable to any type of breeding population obtained
from inbred parents. We then investigate with simulated data mimicking conventional breeding programs
the influence of different estimates of the IBD values on the power of QTL detection. The proposed
method would provide an alternative to the development of specifically designed recombinant populations,
by utilizing the genetic variation actually managed by plant breeders. The use of these detected QTL in
assisting breeding would thus be facilitated.

THE availability of molecular markers in the 1980s called the fixed-model approach (Xu and Atchley
1995) since it considers a fixed number of distinct allelesopened a new scope for quantitative genetics and

breeding. It was anticipated that the manipulation of (most often two) at each putative QTL. Statistical meth-
ods for the QTL analysis of biparental populations un-loci underlying quantitative traits (QTL) would be as

easily feasible as with Mendelian factors. This, however, derwent successive improvements through the advent
of interval mapping (Lander and Botstein 1989) andhas generally not been the case, despite the large corpus

of theoretical studies on marker-assisted selection (MAS; its linearization (Haley and Knott 1992), composite
interval mapping (Zeng 1993, 1994; Jansen 1993), ande.g., Lande and Thompson 1990; Gimelfarb and Lande

1994, 1995; Hospital et al. 1997). The main reason multiple-trait QTL mapping (Jiang and Zeng 1995;
Korol et al. 1995).is probably the cost of markers and the relatively low

In contrast, breeder’s material is distinct from theimprovement in selection efficiency that leads MAS to
biparental populations studied in many mapping exper-be generally much more expensive than conventional
iments. Breeders generally handle many small-sized fam-breeding (Moreau et al. 2000). The other reason is that
ilies derived from crosses between (often highly related)applied breeding programs and QTL research are often
elite lines. The methods described above are poorlydisconnected, i.e., performed by different teams and
suited to such material. Moreover, there are many draw-using different plant material.
backs for the breeder’s use of the QTL found on bipa-Generally, QTL analyses are carried out on a few
rental populations. First, when only two parents areprogenies from crosses between a small number of dis-
considered, some markers and potential QTL are moretantly related lines, often including wild relatives. Such
likely to be monomorphic, even if parental lines areanalyses mostly involve biparental progenies such as
carefully selected for trait divergence. Since, by defini-backcrosses (BC), doubled haploid lines (DH), F2, or
tion, QTL can be found only at polymorphic sites inrecombinant inbred lines (RILs). In the approaches
the genome, the expected number of QTL detectedbased on this kind of plant material, the effect of an
with a biparental cross will be lower than that expectedallele substitution at a candidate locus is tested. This is
when analyzing several crosses at a time (assuming the
total number of genotypes is not the limiting factor).
The second drawback is that the QTL effect is estimated
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a line by the introgression of a QTL allele into a com- tation of the IBD matrices (see George et al. 2000 for
a review). The IBD status between two individuals canpletely new genetic background is rather unpredictable,
be precisely inferred if the relationship between the twobecause of possible epistatic interaction between QTL
individuals (i.e., the pedigree) is known and if ancestorsand genetic background. Finally, from an economic
in the pedigree can be genotyped. Most of the existingstandpoint, the cost of creation of large single-cross
methods to compute IBD probabilities [see, for instance,progenies and specific trials for trait evaluation to per-
the software LOKI (Heath 1997), SOLAR (Almasy andform QTL detection is quite high and often at the ex-
Blangero 1998), and SIMWALK2 (Sobel et al. 2001)]pense of other selection programs.
were developed for human and animal genetics and areAll these drawbacks reduce the breeder’s interest in
not directly applicable to the particularities of plantsimplementing such experimental designs when funding
(inbreeding, self-pollination, controlled mating, selec-and work are constrained. Biparental crosses are usually
tion . . .). Moreover, in such methods, if unknown rela-preferred for more upstream studies, e.g., genomics: the
tionships exist between parents of individuals of thefine mapping of a QTL, which is a prerequisite for
mapping population, then parents are considered asits positional cloning, is easier when fewer QTL are
founders. This statement yields systematically for non-segregating. In contrast, the breeder’s focus will be to
sibs IBD likelihood of zero at any position on theircharacterize the effect of a wide range of alleles in his
genome, even if it is commonly assumed in plant breed-germplasm. Methods for simultaneous detection and
ing programs that most of the parents share commonmanipulation of QTL in breeding programs would thus
“unknown” ancestors (use of some “star” varieties; seeenhance the applicability of MAS.
Bernardo 1993, for example). Furthermore, in frag-Muranty (1996) suggested the use of progenies from
mented situations, i.e., where there are many familiesseveral parents, to achieve a high probability of obtaining
of small sizes (especially when the genotyping takesmore than one allele at a putative QTL and also to have
place at a late stage in pedigree breeding, where wea more representative estimate of the variance accounted
may easily end up with as few as one or two lines perfor by a QTL. Xu (1998) compared the QTL detection
cross), the IBD-likelihood matrix can be very sparse.powers obtained with random-effect models and fixed
Hence, much could be gained in exploring the actualeffects and found similar values for individual family
between-family IBD likelihoods in cases where only littlesizes as low as 25 individuals. However, in more unbal-
information is available.anced designs, the random-effect approach was pre-

In this article, we continued these developments andsumed to be more suited as it can handle any arbitrary
further assumed a nonzero IBD likelihood between non-pedigree of individuals (Lynch and Walsh 1998; Xu
sib lines. For that, we devised a method to take into

1998). Efficient methodologies for more fragmented
account an estimate of the coefficients of coancestries

populations in plants have been developed (for exam- between parents to build the IBD matrices and present
ple, Xie et al. 1998; Yi and Xu 2001; Bink et al. 2002; a unified IBD-based variance component analysis frame-
Jansen et al. 2003), but their extension or implementa- work, to map QTL in any kind of multicross designs
tion for any complex plant designs, implying a mixture involving self-pollinating species, at any generation.
of half-sib and full-sib families of different sizes, at any To test the accuracy of the method, we considered
generation of selfing, is not straightforward. The identi- the most general case of pedigree breeding programs,
cal-by-descent (IBD)-based variance component analysis where many different two-parent crosses are performed,
is a powerful statistical method for QTL mapping in each yielding very small progenies in advanced genera-
complex populations and can be used in pedigrees of tions of selfing. We then investigated the influence of
arbitrary size and complexity (Almasy and Blangero different methods of IBD computation on the power
1998). These IBD-based variance component analyses and accuracy to detect QTL on different complex popu-
are derived from the assumption that individuals of lations similar to those used in breeding.
similar phenotype are more likely to share alleles that
are identical by descent. The construction of IBD matri-

METHODSces for alleles at each position tested along the genome
and the fitting of random-effect models (which assumes Plant breeding material—multicross inbred designs:
that QTL effects are normally distributed) offer an ap- In this article, we consider a mapping population com-
propriate method to map QTL if the mapping popula- posed of several subpopulations of small size. Each of
tion is large enough and if the progenies are connected these subpopulations is composed of as few as one off-
in some way. In addition, these models do not need to spring coming from a single cross between two inbred
assume a known, finite set of alleles at each putative parents. For example, these subpopulations could be
QTL. Thus, they offer a less parameterized statistical produced by several consecutive selfings (e.g., RILs) or
environment in which to map QTL, because only the backcrossings. We use the terms “parent,” “half-sib,” and
variances need to be estimated instead of every allele “full-sib” in a broadened sense. By parents, we mean
substitution effect. IBD-based variance component ap- the two inbred lines that are crossed with each other

to start a new breeding cycle. By full-sib, we mean indi-proaches mostly differ from one another in the compu-



1739IBD-Based Multicross QTL Mapping

viduals derived from the same initial cross (i.e., involving First, we draw relevant calculations of the IBD values
for each of these cases (Figure 1).the same two parents), after any number of selfing and/

Computation of G matrices with parents consideredor backcrossing generations. By half-sib, we mean indi-
as founders: Exact IBD value between two individuals at aviduals sharing one parent in common, after any num-
QTL: Within each subpopulation, only two alleles areber of selfing and/or backcrossing generations. Any
segregating at each locus, giving only three possibleindividuals that do not share any parent in common
genotypes at the QTL, for example, Q 1Q 1, Q1Q 2, andare termed “unrelated.” The definitions are more rele-
Q 2Q 2.vant to plants, since our phenotyped progenies may

Suppose that one of the subpopulations is composedcommonly be as far as six or seven generations from
of two individuals (i and j) that are thus full-sibs. Thetheir parents. Nevertheless, in a general case, the ge-
IBD value between two full-sibs i and j at a QTL is mea-nome of the individuals of the mapping population
sured ascould be fixed (i.e., lines), fully heterozygous (i.e., F1),

or a mixing of fixed and heterozygous parts (i.e., issued
�i,j � 2�i,j

from successive backcrossing or selfing generations).
Mixed linear models: We assume that the quantitative

� �2 for Q 1Q 1 � Q 1Q 1 or Q 2Q 2 � Q 2Q 2

1 for Q 1Q 1 � Q 1Q 2, Q 2Q 2 , � Q 1Q 2, or Q 1Q 2 � Q 1Q 2

0 for Q 1Q 1 � Q 2Q 2 ,
trait value is a linear combination of fixed design effects,
putative QTL (with additive or/and dominance effects),
and additive polygenic effects. The polygenic effect is �i,j being the IBD value between individuals i and j, at
seen as the cumulative effect of all loci affecting the a putative QTL (�i,j represent also the ijth elements
quantitative trait that are unlinked to the QTL. The of G), and �i,j being Malecot’s (1948) coefficient of
model without dominance effect is coancestry. If i and j are inbred, �ij is interpreted as

twice the coefficient of coancestry for the QTL (see Xiey � X� � Zu � Zv � e, (1)
et al. 1998 for the interpretation of the inbred case).

In the same manner, the IBD values between two half-where y is an (m � 1) vector of phenotypes, X is an
sibs i and j at a QTL are measured as(m � s) design matrix, � is a (s � 1) vector of fixed

effects, Z is an (m � q) incidence matrix relating records
to individuals, u is a (q � 1) vector of additive QTL

�i,j � 2�i,j � �2 for Q 2Q 2 � Q 2Q 2

1 for Q 1Q 2 � Q 2Q 3

0 otherwise.effects, v is a (q � 1) vector of additive polygenic effects,
and e is the residual vector. We assume the random
effects u, v, and e as uncorrelated and distributed as Finally, if individuals i and j are non-sibs, and their
multivariate normal densities, parents are still supposed unrelated, they will share IBD

probability of 0.
u � (0, G� 2

u), v � (0, A� 2
v), e � (0, I� 2

e), Inferring the IBD likelihood at a QTL from marker data:
The IBD value is determined by the genotypes of twowith � 2

u, � 2
v, and � 2

e being, respectively, the additive vari-
individuals at the QTL of interest. The actual QTL geno-ance of the QTL, the polygenic variance, and the resid-
type of an individual, however, is in most cases notual variance. A is the (q � q) additive genetic relation-
observable and must be inferred from flanking markership matrix; G is the (q � q) (co)variance matrix for
information (that we term IM—this is represented inthe QTL additive effects conditional on marker informa-
Figure 1 by A and A�).tion; and I is the identity matrix.

We denote the following probabilities, suited for allThe model without QTL segregating in the popula-
cases (full-sib and half-sib cases are particularities of the

tion is, with the same notations,
unrelated case), pi 2 � Pr(Q 1Q 1|IM), pi1 � Pr(Q 1Q 2|IM),
pi 0 � Pr(Q 2Q 2|IM) and pj 2 � Pr(Q3Q3 |IM), pj 1 � Pr(Q3y � X� � Zv � e. (2)
Q4 |IM), and pj 0 � Pr(Q4Q4|IM). It should be noted that

Computation and implementation of G and A matri- for half-sibs Q 4 is replaced by Q 2 and for full-sibs Q 3 is
ces: To solve the mixed-linear model, we need to know replaced by Q 1 and Q 4 by Q 2 . We write pi � [pi 2 pi 1 pi 0]T

A and G matrices (y, X, Z, and I are known) to estimate and pj � [pj 2 pj 1 pj 0]T.
� 2

u, � 2
v, and � 2

e. Starting from Xie et al.’s (1998) notations addressing
With the above definitions of the material, if we con- the case of full-sib individuals only, the conditional ex-

pectations of the IBD values are �̂i,j � E(�i,j |IM) � pT
i Cpjsider a pair of individuals from the mapping population,

for between individuals and �̂i,i � E(�i,i |IM) � cT pi forthey may be (i) taken from the same subpopulation, in
the individual with itself, wherewhich case they are full-sibs, or (ii) taken from two

different subpopulations. In this last case, if one of the
parents is common to the two subpopulations, the two

C � �2 1 0
1 1 1
0 1 2� and c � �212� .individuals will be half-sibs; if the parents of the two

subpopulations are distinct, the two individuals are con-
sidered as unrelated. We can easily extend the C matrix to generalize the
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Figure 1.—If parents (P1, P2, P3, and P4) are considered as founders, only three types of relationships exist between individuals
i and j of the mapping population. Notations Q 1, Q 2, Q 3 , and Q 4 represent parents’ QTL information while Q and Q � (unknown)
represent progenies’ i and j QTL information. In the same manner, 1, 2, 3, and 4 represent parents’ marker alleles information
while A and A� (supposedly known) represent progenies’ i and j marker information. Q 1, Q 2, Q 3 , and Q 4 are homozygous while
Q and Q � can be heterozygous. The possible genotypes at the QTL for the three cases are as follows:

full-sib and half-sib case by introducing the coancestries parents. For the following, we still consider that the
parents of the latest breeding cycle and the currentbetween parents P1-P3 and P2-P4, denoted by �P1P3 and

�P2P4. If parents are considered as founders, these coan- F(n)-derived lines are the only genotyped material.
However, we consider this time that the parents of thecestries can take only values 1 or 0. Thus, the new C

matrix can then be rewritten as C1: mapping population could come from previous genera-
tions of breeding. They are thus very likely to share
common ancestors (due to the intensive use of some star

C1 � �2�P1P3 �P1P3 0
�P1P3

1⁄2(�P1P3 � �P2P4) �P2P4

0 �P2P4 2�P2P4
�. varieties, for instance), even if those ancestors cannot be

genotyped. Thus, for the full-sib case example, we could
take into account the probability that the two parentsNote that for the full-sib case P1 � P3 and P2 � P4,
share IBD QTL alleles. For the unrelated case, we couldso that �P1P3 and �P2P4 are equal to one and the C1 matrix
take into account the probability that P1-P3, P1-P4, P2-is similar to C. Similarly, the relevant C matrices for
P3, or P2-P4 share IBD QTL so that Q 1 � Q 3, Q 1 � Q 4,half-sib individuals can be obtained by replacing �P1P3

Q 2 � Q 3, and Q 2 � Q 4. If we are able to estimate theseby zero and �P2P4 by one—or �P1P3 by one and �P2P4 by
probabilities, they could be used to improve the compu-zero (and, for unrelated individuals, by replacing both
tation of �̂i,j’s. For the following, we supposed that esti-�P1P3 and �P2P4 by zero).
mates of these probabilities between all parents wereThis formula, using the C1 matrix (with the �’s being
available. We take the more general case, i.e., the unre-equal to 0 or 1 only) for computing the IBD values, is
lated one, to draw a general formula that incorporatesreferred to as formula 1 in the rest of the article.
these estimates and that covers the three cases of rela-Computation of G matrices with parents not consid-
tionships between individuals of the mapping popula-ered as founders: Using the above formula to compute
tion. We denote by �P1P3, �P1P4, �P2P3, and �P2P4 the estimates�̂i,j’s, we assumed that parents of subpopulations were
of the coefficients of coancestries between the four par-unrelated; i.e., they did not share any common ances-
ents.tors. Thus, to infer the IBD probabilities in the previous

First, we generalized above the C matrix to the knowncase, we did not need to have more genotypic informa-
tion than that of the mapping population and of their half-sib and full-sib individuals by introducing the coan-
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cestries between parents P1-P3 and P2-P4, giving the C1 2 � 0.125. Thus, this information would be used in
formula 2 to improve the accuracy of the IBD estimate.matrix.

Similarly, taking into account the coefficients be- The second way to estimate these coefficients is to
use the available molecular marker information. Neitween the parents P1 and P4 on one hand and P2 and

P3 on the other hand, we can write the C2 matrix as and Li’s (1979) formula can be used to calculate the
genetic similarity index (GS): GS � 2Nij/(Ni � Nj),
where Nij is the number of alleles in common between

C2 � �0 �P2P3 2�P2P3

�P1P4
1⁄2(�P2P3 � �P1P4) �P2P3

2�P1P4 �P1P4 0 � . genotypes i and j, and Ni and Nj are the total number
of alleles observed for genotypes i and j, respectively.

Implementation of the IBD formula: We used theFinally, with these two matrices, we can draw a general
deterministic approach of the MDM program (Servinformula for the conditional expectation of the IBD val-
et al. 2002) to compute all the pi and pj probabilities, atues between two individuals coming from four (distinct
any generation of selfing or backcrossing. IBD valuesor not) inbred parents:
were computed every 3 cM. Two flanking markers were

�̂i,j � E(�i,j |IM) � pT
i C1pj � pT

i C2pj � pT
i (C1 � C2)pj ; used to infer the genotypes’ probabilities. In the fre-

quent case where the two parents shared the samei.e.,
marker alleles at one or two loci flanking the putative

�̂i,j � E(�i,j | IM) � 2(�P1P3[(pj 2 � 1⁄2pj 1)(pi 2 � 1⁄2pi1)] QTL position, the next closest markers to the interval
were used. It can easily be demonstrated that the IBD� �P1P4[(pj 2 � 1⁄2pj 1)(pi 0 � 1⁄2pi1)]
values calculated at a putative QTL will be more precise

� �P2P3[(pj 0 � 1⁄2pj 1)(pi 2 � 1⁄2pi1)] if the flanking markers are highly polymorphic.
Solving of the mixed-linear models and test statistic� �P2P4[(pj 0 � 1⁄2pj 1)(pi 0 � 1⁄2pi1)]).

under the null hypothesis: Two-step IBD-based variance
The conditional expectation of the IBD for an individual component method: The method used to map QTL in a
with itself remains complex inbred pedigree is then similar to all interval-

mapping-based variance component methods. It is com-
�̂i,i � E(�i,i |IM) � 2pi 2 � pi1 � 2pi 0 .

posed of two steps (two-step IBD-based variance compo-
nent method), as described in George et al. (2000). InIn the rest of the article, this formula, using the C1 and

C2 matrices to compute IBD values, is referred to as step 1, we computed the G matrices according to the
formula tested, for all the scanned positions. We thenformula 2.

Please note that in the case of two full-sib individuals, inverted and wrote them in ASREML (Gilmour et al.
1998) format for user-defined inverse (co)variance ma-the probability that the two parents P1 and P2 share

initially IBD QTL is taken into account in formula 2 by trices. We also computed the appropriate additive rela-
tionship matrix A, inverted it, and wrote it in ASREMLreplacing P3 by P1 and P4 by P2 (P1 and P2 are consid-

ered as the parents of the first full-sib, P3 and P4 as the format. In step 2, ASREML provided restricted maxi-
mum-likelihood (REML) estimates of steps 1 and 2. Toparents of the second full-sib). Thus, both �P1P3 and

�P2P4 will take values of one (accounting for the full-sib test for the presence of a QTL against no QTL at a
particular chromosomal position, we used the log-likeli-relationship with parents considered as founders—

similar to the formula of Xie et al. 1998) while both �P1P4 hood-ratio test: LR � �2 ln[L0 (H0, no QTL present) �
L1 (H1, QTL present)], where L1 and L0 represent theand �P2P3 will be written as �P1P2 (accounting for possible

coancestry between parent P1 and P2). likelihood values of steps 1 and 2 evaluated at the REML
solutions, respectively.Estimates of the coefficients of coancestries: With

the above formula 2, it may be seen that accurate esti- Test statistic under the null hypothesis: The choice
of a test statistic threshold is always challenging in thismates of the coefficients of coancestries between parents

of individuals i and j of the mapping population are kind of situation. As mentioned by George et al. (2000)
permutation testing is problematic for such IBD-basedneeded for the computation of the G matrices (that are

built at each scanned position). These coefficients need variance component analysis since it is unclear how to
permute the data while retaining the association be-also to be estimated between all the individuals i and j

of the mapping population, to account for polygenic tween polygenic variation and marker information.
Many publications (Zeng 1994; Xu and Atchley 1995,variation through the relationship matrix A. There are

two main ways to estimate these coefficients of coances- for example) report that when a chromosomal interval
is being scanned, the empirical distribution of LR fol-tries. The first one is to compute Malecot’s coefficients

on the basis of the available declared pedigrees and lows a mixture of two chi-square distributions, with 1 and
2 d.f., respectively. Since this article deals with simulatedcome back to the pedigree of each variety as far as

possible. For example, two parents of the mapping pop- data, it is possible to replicate data under the null hy-
pothesis of no QTL segregating, construct the empiricalulation with a grandparent in common will share an

expected proportion of genome identical by descent of distribution of LR, and derive an empirical threshold by
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choosing the 95th percentile of the highest test statistic, elite, for example). Fourth, mass selection on the value
of the quantitative trait was possible at each breedinggenerally over 500 or 1000 stochastic realizations. In

this article, we calculated an empirical threshold for cycle.
At every generation, a phenotype was simulated foreach set of parameters, and then we ran 1000 additional

simulations with no QTL segregating on the scanned each individual line on the basis of its main QTL and
polygene alleles. We performed QTL detection on thechromosome. We increased the polygenic variance such

that the total genetic variance remained unchanged and last breeding cycle.
Note that at the beginning of our breeding programs,determined the empirical threshold by choosing the

95th percentile from the list of 1000 runs. It should all the allele frequencies were equal, which was not
the case after many generations due to genetic drift,be noted that this threshold is not genomewise but is

chromosomewise. nonpanmictic conditions, and selection. All the markers
and QTL were in full linkage disequilibrium at G0 but
were not so after the breeding programs—the chromo-

A SIMULATION STUDY: THE CASE OF A PEDIGREE somes having undergone many recombinations. Hence,
BREEDING PROGRAM

as anticipated, a simple ANOVA was inefficient (results
not shown).We chose the case of pedigree breeding for the simu-

lation study as it contained most of the difficulties gener- Simulated populations: To illustrate the methodol-
ogy, we focused only on two representative settings (twoally encountered in inbred breeding programs: fre-

quent lack of reliable pedigree information, beyond the complex populations of different size), for which we
varied a limited number of parameters. For both set-parents (and thus unavailability of ancestor lines for

genotyping); possible genotyping only of advanced gen- tings, we initially fixed the following parameters: 20
founder lines (that initially correspond to 20 differenterations of selfing, when the number of lines has de-

creased and the precision of trials increased, constrain- alleles at each marker and QTL, with 20 different allele
effects at the QTL), 21 chromosomes of length 100ing the computation of IBD at the end of a breeding

cycle, without any marker information between the ini- cM each with 11 markers spaced every 10 cM, a QTL
segregating at position 45 (half-way between two mark-tial cross and the resulting progenies (a breeding cycle

comprises the initial crosses between many different ers) on chromosome 1, and a total genetic heritability
(QTL and polygenes) of 0.5. We fixed the number ofparents to obtain the new improved lines after many

generations of self pollination); the very high number breeding cycles to 10 without selection and to 6 with
selection (to retain genetic variance around the chro-of parents of the mapping population yielding very small

full-sib families, and an uneven (L-shaped) distribution mosome 1 QTL and around the polygenes). The num-
ber of polygenes varied from 40 for the cases withoutof half-sib family sizes; and the possible occurrence of

mass selection for the choice of the parents at the start selection to 9 and 4 with selection, for QTL heritabilities
0.05 and 0.1. We chose these numbers of polygenes inof a breeding cycle.

Simulation of the breeding program: An S-PLUS the case of selection to set an equivalent heritability for
each QTL and polygene to avoid the rapid fixation of(2000) function was developed to reproduce the typical

steps of pedigree-based plant breeding programs (see chromosome 1 QTL.
Setting 1 is composed of 300 inbred lines derived fromhttp://www.genetics.org/supplemental/ for a detailed

description). Briefly, we started by creating founder crosses between 50 parents chosen at random from the
previous breeding cycles. Of 1225 different possiblelines at the beginning of breeding (beginning of 20th

century, for instance). At this stage, the material was in crosses [(50 � 49)/2], 170 crosses per breeding cycle
were simulated. Each cross gave, on average, 1.75 full-complete linkage disequilibrium, with as many alleles

as there were founder lines (for example, founder line sibs and each parent was found, on average, in 12 proge-
nies. We simulated two groups of mapping populations:1 carried only allele “1” for all the markers and QTL

. . .). In the first breeding cycle, we produced new germ- group a was obtained without the influence of selection
on the quantitative trait, and group b was obtainedplasm by crossing the founder lines together. Then,

during the following breeding cycles, we performed under the influence of selection on the quantitative trait
for the choice of the parents at each generation.Thecrosses in a pedigree-breeding fashion. First a large

number of parents were used to obtain a reduced num- heritability of the chromosome 1 QTL was fixed for
each population at 0.1.ber of lines in advanced selfing generations (for exam-

ple, 100 parents are crossed to obtain only 500 individu- Setting 2 is composed of 500 individuals, derived from
crosses between 100 parents. Of 4950 different possibleals at the end of a breeding cycle). Second, most of the

current parents were chosen among the lines derived crosses, 285 crosses per breeding cycle were simulated.
Each cross gave, on average, 1.75 full-sibs and each par-from the most recent breeding cycles while a small part

was extracted from older breeding cycles (to represent ent was found, on average, in 10 progenies. We simu-
lated different groups of populations, for different levelsnonelite germplasm). Third, crosses were unevenly dis-

tributed (elite germplasm was crossed more than non- of QTL heritabilities and with and without the influence
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TABLE 1

Main characteristics of the different mapping populations

Occurrence of selection No. of No. of marker
Mapping and simulated QTL and breeding No. of alleles flanking Effective no. of
populations total genetic heritability cycles polygenes the QTL marker alleles

Setting 1 (50 parents, 300 progenies) No, h 2
QTL � 0.1 10 40 10 5.5

h 2
g � 0.486 (0.083)

Yes, h 2
QTL � 0.1 6 4 6 2.8

h 2
g � 0.478 (0.180)

Setting 2 (100 parents, 500 progenies) No, h 2
QTL � 0.05, 0.1, 0.2 10 40 14 6.2

h 2
g � 0.427, 0.435, 0.456

(�0.050)
Yes, h 2

QTL � 0.05 6 9 13 4.5
h 2

g � 0.590 (0.210)
Yes, h 2

QTL � 0.1 6 4 12 4
h 2

g � 0.550 (0.210)

The fixed parameters are 20 founder lines (i.e., initially 20 possible alleles at all the markers and QTL), 21 chromosomes of
length 100 cM each with 11 markers spaced every 10 cM, and QTL segregating at position 45 on chromosome 1. The effective
number of alleles is computed as Neff � 1/�N

1 f 2, f being the allele frequencies and N the number of alleles. This effective
number of alleles is averaged at the two markers flanking the QTL (located on position 45 cM).

of selection: group a was obtained without the influence tween two individuals of the mapping population, and
the A matrix will take the expected proportion of ge-of selection. We created the quantitative trait on the

mapping population (10th generation of breeding) for nome shared by two individuals, i.e., 2 � 0.5 if the two
inbred individuals are full-sibs, 2 � 0.25 if the two inbredQTL heritabilities 0.05, 0.1, and 0.2. Group b was ob-

tained under the influence of selection on the value of individuals are half-sibs, 0 otherwise.
In setting 1, we used alternatively formulas 1, 2a, andthe quantitative trait. We investigated two levels of QTL

heritability: 0.05 (with nine polygenes of 0.05 each) and 2b, while we used only formulas 1 and 2b in setting 2,
due to computation time required for obtaining Malec-0.1 (with four polygenes of 0.1 each).

Table 1 summarizes the main characteristics of the ot’s coefficients of coancestries for such important pop-
ulations.different mapping populations. It should be noted that

there were initially 20 alleles for each marker and QTL We tested every third centimorgan for the presence
of a QTL. Under each condition, the detection wasbut that this number was greatly reduced after 6–10

breeding cycles, due to genetic drift and/or selection performed for 100 random replicates. Parameters esti-
mates and their standard error are reported for all repli-pressure.

Methods compared: In this article, we investigated cates.
two different ways to infer the coefficients of coances-
tries. We thus termed formulas 2a and 2b as follows:

RESULTS
Formula 2a: Malecot’s coefficients of coancestries are

The average likelihood-ratio test profiles (over 100used to build G (through formula 2) and A matrices.
replicates) are presented in Figure 2 for both settings.For that, full pedigree is stored during simulations
There was a strong influence of the formula on the LRand used to compute parents’ and progenies’ coeffi-
profile for both settings, either without the influencecients of coancestries. The algorithm implemented is
of selection (Figure 2, a and c) or with selection (Figuredescribed in Lynch and Walsh (1998, p. 763).
2, b and d). As expected, there was also a strong influ-Formula 2b: Marker-based estimates of the coefficients
ence of the magnitude of the QTL effect (i.e., the herita-of coancestries on the whole genome are used to
bility of the QTL) on the LR profile (Figure 2, c andbuild G (through formula 2) and A matrices. They
d). Formula (2b)—which takes into account ancestorare computed using Nei and Li’s (1979) formula.
pedigree relationships as estimated by markers to infer
the IBD values—outperformed in terms of detectionThe reference method in the simulation study is for-

mula 1, which uses only half-sib and full-sib relation- power other formulas for both settings.
The ability of the three formulas to estimate the pa-ships, which are known with 100% certainty, to compute

the IBD matrices and the relationship matrix. Thus, for rameters of interest accurately can be judged from the
results presented in Tables 2 and 3. The accuracy offormula 1, the G matrix will have terms different from

0 only when full-sib or half-sib relationships exist be- the estimated QTL position increased with both the
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Figure 2.—Comparison of the LR profiles for (a) setting 1 under formulas 1, 2a, and 2b without selection; (b) setting 1 under
formulas 1, 2a, and 2b with selection; (c) setting 2 under formulas 1 and 2b for three levels of QTL heritabilities (0.2, 0.1, and
0.05), without selection; and (d) setting 2 under formulas 1 and 2b for two levels of QTL heritabilities (0.1 and 0.05), with
selection.

design of the population (higher QTL heritabilities, confidence intervals under formula 2b. We also noted
difficulties in estimating the QTL heritability accurately,bigger mapping population) and the switch from for-

mula 1 to formulas 2a and 2b. Selection also acted on as it was already shown in simulation studies by Grig-
nola et al. (1996, 1997) and George et al. (2000). Thethe accuracy of the position estimates by reducing the

TABLE 2

Estimates of position, QTL heritability (ĥ 2
QTL), total genetic heritability (ĥ 2

g), and test statistic (LR) for setting 1

Setting 1 Tested formula Position ĥ 2
QTL ĥ 2

g

Without selection True values 45 cM 0.1 0.486 (0.083)
Formula 1 46.65 (18.51) 0.117 (0.054) 0.454 (0.154)
Formula 2a 47.14 (18.98) 0.126 (0.059) 0.468 (0.145)
Formula 2b 45.18 (18.48) 0.138 (0.067) 0.479 (0.124)

With selection True values 45 cM 0.1 0.478 (0.180)
Formula 1 50.05 (19.35) 0.125 (0.059) 0.446 (0.178)
Formula 2a 46.20 (19.14) 0.150 (0.068) 0.457 (0.155)
Formula 2b 44.08 (17.19) 0.169 (0.079) 0.516 (0.189)

See Table 1 for the description of setting 1. Mean and standard deviations (in parentheses) are calculated
among the 100 replicates.
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TABLE 3

Estimates of position, QTL heritability (ĥ 2
QTL), total genetic heritability (ĥ 2

g), and test statistic (LR) for setting 2

Setting 2 Tested formula True h 2
g Position ĥ 2

QTL ĥ 2
g

Without selection
h 2

QTL � 0.05 Formula 1 0.427 (0.068) 49.44 (25.42) 0.067 (0.035) 0.427 (0.108)
Formula 2b 46.45 (21.84) 0.085 (0.041) 0.432 (0.107)

h 2
QTL � 0.1 Formula 1 0.435 (0.051) 47.76 (20.88) 0.099 (0.042) 0.442 (0.081)

Formula 2b 45.52 (17.72) 0.129 (0.056) 0.450 (0.083)
h 2

QTL � 0.2 Formula 1 0.456 (0.047) 44.91 (7.35) 0.192 (0.058) 0.451 (0.083)
Formula 2b 45.73 (6.89) 0.228 (0.065) 0.467 (0.091)

With selection
h 2

QTL � 0.05 Formula 1 0.590 (0.210) 53.62 (23.71) 0.060 (0.037) 0.635 (0.171)
Formula 2b 52.98 (21.09) 0.096 (0.055) 0.658 (0.178)

h 2
QTL � 0.1 Formula 1 0.550 (0.210) 48.10 (17.90) 0.121 (0.036) 0.657 (0.186)

Formula 2b 46.76 (12.33) 0.155 (0.061) 0.638 (0.178)

See Table 1 for the description of setting 2. Mean and standard deviations (in parentheses) are calculated
among the 100 replicates.

accuracy of the estimated QTL heritability was influ- lent for all the designs, which was not really surprising
as the number of parameters being tested in the randomenced by the initial effect of the QTL, by the switch

from formula 1 to formula 2b, and by the occurrence model strategy did not vary. The values of the LR test
and thus the power to detect QTL under the empiricalof selection. For all designs, formula 2b led us to overes-

timate QTL heritabilities more than formula 1 did. threshold were influenced by the design of the popula-
tion (higher QTL heritabilities, size of the mappingWe report in Table 4 the average LR test statistics

over all replicated simulations and the respective power population, influence of selection) and by the switch
from formula 1 to formula 2b. This switch to formulaestimates under the empirical chromosomewise thresh-

old. The empirical threshold values were nearly equiva- 2b gave an increase in the value of the test by a mean

TABLE 4

Observed 95th percentile likelihood ratios under the hypothesis of no QTL segregation,
test statistic, and power to detect QTL

Nonoccurrence of selection Selection

Formula Threshold Test statistic Power (%) Threshold Test statistic Power (%)

Setting 1: 300 individuals, 50 parents
Formula 1 4.04 5.66 (3.99) 60 4.12 5.44 (3.93) 45
Formula 2a 3.97 6.08 (4.57) 63 3.88 5.78 (4.59) 47
Formula 2b 4.06 8.16 (5.62) 78 3.91 8.88 (5.86) 85

Setting 2: 500 individuals, 100 parents
h 2

QTL � 0.05
Formula 1 4.08 4.62 (3.52) 47 3.86 4.41 (3.94) 44
Formula 2b 3.96 5.23 (3.97) 58 3.44 7.35 (4.63) 70

h 2
QTL � 0.1
Formula 1 4.08 7.75 (5.06) 71 3.66 6.35 (4.14) 67
Formula 2b 3.96 9.76 (6.71) 80 3.44 11.65 (6.22) 94

h 2
QTL � 0.2
Formula 1 4.08 22.03 (10.9) 100 — — —
Formula 2b 3.96 23.69 (10.8) 100 — — —

See Table 1 for a description of settings 1 and 2. Threshold represents the empirical chromosomewise
threshold calculated for 1000 replicates. Test statistic is the mean and standard deviation of the maximum of
the LR test for the 100 replicates. Power is the percentage of replicates with maximum LR exceeding the
empirical threshold. —, simulations are not performed under these conditions.
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of 20%, yielding thus an increase in the detection power. populations is a little different. In a second approach,
we considered that estimates of the coefficients of coan-The interest of formula 2b was further demonstrated

with selection, for both settings: almost twice as many cestries were inferable between the parents of the map-
ping population, but that genotypic information fromreplicates were significant when IBD values were in-
the parents’ ancestors was not available. We integratedferred by taking into account genetic similarities as esti-
these coefficients of coancestries to the IBD computa-mated by markers as when using direct pedigrees (or
tion, in formula 2. Thus this formula can be viewed,Malecot’s coefficients of coancestries for setting 1).
loosely speaking, as an attempt to merge, to some extent,
several families together on the basis of the likelihood
that the parents share the same alleles identical-DISCUSSION
by-descent at the putative locus. Then, in constructing

Many statistical methods already exist to map QTL in the matrices of IBD values, the extent to which the G
inbred plant material; however, most of these methods matrix was modified from formula 1 to formula 2 is
focus on a single biparental cross or on simple experi- quite large. The proportion of IBD values equal to zero
mental populations such as diallel designs. Other meth- in G, with formula 1—those values between non-sib
ods have been developed to address more challenging lines—and replaced by nonzero values in formula 2,
population structures (Xie et al. 1998; Yi and Xu 2001; was equal to 87% for setting 1 and 91% for setting 2,
Bink et al. 2002, for example), but they do not appear with an average inferred IBD value of 0.11 between non-
to be easily extendable to highly fragmented and unbal- sibs. This leads to a substantial improvement of the
anced populations, at any selfed or backcrossed genera- accuracy of the position estimates and of the QTL detec-
tion, and they do not take into account the possibility tion power for all the designs, by extracting more infor-
for alleles to be IBD if ancestor pedigrees are not avail- mation on IBD status between individuals. The power
able. In this study, we extended the QTL mapping meth- increase obtained by using formula 2b instead of for-
odology proposed by Xie et al. (1998) to typical plant mula 1 follows the same principle as that obtained by
breeding populations made up of selfed (or backcrossed) Xie et al. (1998) in his Table 4, when he switched from
individuals, which may have two parents in common, a 250 � 2 sampling strategy (250 families with two full-
one parent in common, or parents more distantly re- sib individuals each), for example, to a less fragmented
lated to each other or not related. Two sets of popula- 50 � 10. The power to detect QTL in IBD-based ap-
tions mimicking conventional breeding programs were proaches increases with the proportion of nonnull PIBD
simulated, in an effort to reproduce realistic conditions in the G matrix. Thus, in the multicross design of Xie
of marker and gene frequencies and linkage disequilib- et al. (1998), nonzero diagonal boxes in the G matrix
rium across the parental lines. The complex design of corresponding to the full-sib relationships make up an
these populations (highly fragmented, with unbalanced increasing proportion of the total G matrix when reduc-
contributions of the parents to the following generation ing the number of families (for example, 250 � 2 �
and the influence of selection) was chosen to represent 2 � 1000 cells with full-sib relationships for a 250 � 2
the more complex and more general scenario found in sampling strategy instead of 50 � 10 � 10 � 5000 cells
real plant breeding schemes, and thus results should for a 50 � 10 sampling strategy). This gives an increase
be applicable to any simpler breeding design (for exam- in the level of information at each putative QTL and
ple, to diallel or factorial designs, which are particular thus in the power of the test.
cases of the complex simulated designs). We assessed, The superiority in terms of power of formula 2b com-
on these populations, different approaches to compute pared to the other formulas is even higher in the situa-
IBD values for QTL detection, while applying a two-step tion of selection. One explanation is that, during selec-
IBD-based variance component method. tion, the same best alleles tend to be selected and this

In such multicross inbred designs, there is a strong is so for every QTL in the genome, while the other
within-family linkage disequilibrium that can be ex- alleles are discarded. The same phenomenon also takes
ploited by comparing the parents’ genotypes with the place at the neutral markers because of linkage disequi-
current mapping population, which accumulated rela- librium. This decrease in allele number increases the
tively few crossovers. Formula 1 is solely based on the resemblance between individuals and reduces the effec-
utilization of this linkage disequilibrium, using only di- tive population size. This also amounts to a decrease in
rect pedigrees (which lines are the parents of a given the effective number of alleles and of parents. Hence,
cross) to compute IBD values, considering that no rele- the assumption that alleles across the different parents
vant pedigree information was available from the par- are non-IBD, as implied by formula 1, gradually becomes
ents of the current mapping population. Results ob- even less justified as selection operates whereas formula
tained under formula 1 in terms of test statistic, power, 2b integrates the increasing proportion of the genome
and accuracy on the position estimates are close to those in common between the parents at the successive breed-
found in Xie et al. (1998) and Xu (1998) for populations ing cycles by taking into account their genetic similari-

ties. Selection also generated a bias in the predictedof equivalent sizes, even if the structure of our simulated
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proportion of IBD alleles shared between parents when not IBD. This method to infer the proportion of the IBD
genome was suggested by Melchinger et al. (1991).Malecot’s coefficients were used. This bias induced by

Another lead is to improve the efficiency of theselection explained the inefficiency of formula 2a,
model, for example, to account for multiple QTL. Wewhich gave the same results as formula 1. Finally, under
would first analyze one chromosome at a time, introduc-the influence of selection, the reduction in marker poly-
ing the appropriate IBD matrices into the linear mixedmorphism across the parents (for setting 1, with selec-
model (1). Once QTL detection is performed for alltion, the effective number of alleles decreased from 5.3
the chromosomes, we would extract the most significantdown to 3.6 on average for all chromosome 1 markers)
QTL and introduce it as a covariate in a new lineardecreased the chance to have informative markers
mixed model (with two known random terms: the poly-flanking the interval being scanned: thus, informative
genic term and the most significant QTL). We wouldflanking markers had to be found further apart on aver-
perform the analysis again, introducing the appropriateage. This led, in turn, to lower accuracy of estimates of
IBD matrices into this new model. If significant QTLthe putative allelic state of QTL. Under formula 2b,
still remained or appeared during the genome analysis,however, this reduction of the effective number of al-
then the most significant one would be added to theleles had less influence on the chance to detect the
model and the analysis carried out again until no moreQTL. Taking into account the increasing proportion of
significant QTL appear. This procedure is described ingenome in common between the parents did more than
Almasy and Blangero (1998) and is somewhat analo-compensate the decrease in the number of informative
gous to the composite interval mapping proposed bymarkers, in terms of QTL detection power.
Zeng (1993) for biparental populations.We mention that the structure of breeding programs

Alternatively, we could also improve the precision ofis not really appropriate for the computation of Male-
the matrix A if its computation were based on the mark-cot’s coefficients of coancestries, first because the selec-
ers that are actually linked to some polygenes, i.e., totion pressure during line development often generates
some QTL, instead of using all the markers indiscrimi-biases in the predicted proportion of parental genomes
nately. This procedure could bring an advantage onlyshared by the current lines and second, because pedi-
if a few QTL explain the genetic variation as opposedgrees noted by breeders or declared for variety registra-
to many with a small effect, all over the genome.tion before commercial release are often prone to er-

Our method did not take into account haplotyperors. It has already been suggested by Bernardo (1993)
information on the carrier chromosome, as the goal inthat the use of molecular marker information to com-
this study was to detect QTL at a low marker density.pute coefficients of coancestries between individuals in
The method is typically a linkage method based concom-

the case of plant breeding was more suitable than com-
itantly on the available information of the last breeding

puting them by declared pedigrees. This property was generation and on an estimate of the proportion of IBD
also shown in this article for the use of genetic similari- alleles between parents, at any gene, based on marker
ties instead of Malecot’s coefficients of coancestries to information from the whole genome. But what would
improve the IBD computation. Sources of biases, either happen, for formula 2b, if genetic similarities between
on marker information (presence of alike-in-state, i.e., parents were computed on the scanned chromosome
non-IBD alleles, uneven repartition of markers along only? When a QTL experiment is launched on new
the chromosomes) or on pedigrees (with a portion of germplasm, little is known about the genetic factors
wrong parents’ pedigrees), were added to the settings. whose segregation is going to influence the trait most.
QTL analysis performed under these conditions showed Therefore, a genome-wide scan for QTL must be carried
that the use of marker information to compute genetic out, using a low-marker density first. Hence, using haplo-
similarities always contributed more positively to the type information as in Jansen et al. (2003) or Lund et
QTL detection power than the use of Malecot’s coeffi- al. (2003) would have been worse in this context—that
cients (results not shown). This trend was not reversed, of our study—since linkage disequilibrium between
even in the case of an uneven distribution of polygenes markers separated by 10 cM is too low to recognize
(when only four or nine polygenes were spread on dif- conserved chromosome fragments from a putative com-
ferent chromosomes in the case of selection). mon founder. Alternatively, using the restricted set of

There is still some scope for a more accurate and markers (to those of the scanned chromosome) to calcu-
probably less biased estimation of the coefficients of late our IBD values as in formula 2b, without attempting to
coancestries between parents and between individuals identify conserved haplotypes, yields poorer detection
to estimate the parameters of the model more accurately power than using the complete marker set data (results
and increase the QTL detection power. We could suggest, not shown). This is due to the fact that, in situations of
for example, subtracting from all genetic similarities an low linkage disequilibrium, adjacent markers with the
estimated proportion of alleles in common that suppos- densities mentioned above can be considered to segre-
edly unrelated lines have in common—by definition, these gate independently. Thus, restricting our marker set

to those of the scanned chromosome amounts only toalleles in common would be identical by state only and
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